如何避免WLAN无线干扰?

日期: 2011-08-29 来源:TechTarget中国

  今天,WLAN已经不再仅仅是最初的一种简便的网络接入方式,企业的许多重要应用,诸如语音、视频、定位等服务都逐渐部署到无线网络上。即便是普通的网络访问,用户也是希望带宽越高越好。随着应用的增加,无线干扰问题对网络服务的质量影响日显突出

  一、 无线干扰的分类和来源

  无线干扰按照类型可划分为WLAN干扰和非WLAN干扰。WLAN干扰是指干扰源发送的RF信号也符合802.11标准,除此之外都是非WLAN干扰。对WLAN干扰,可进一步按照频率范围分为同频干扰和邻频干扰。按照来源划分,可分为WLAN网络自身的互干扰和网络外的干扰

  1. WLAN网络自身的同频干扰

  同频干扰是指两个工作在相同频率上的WLAN设备之间的相互干扰。WLAN工作ISM(Industry, Science and Medicine)频段,包括2.4G和5G两个频段。对某些国家或地区来说,仅有2.4G频段可用。在2.4G频段上,互不干扰的频段十分有限,通常只有1、6、11信道(如图1所示)。

2.4G频段信道划分示意图

图1 2.4G频段信道划分示意图

  因此,对一个大的WLAN网络来说,尤其是高密度部署的网络,同一信道常常需要被不同AP使用。而这些AP之间存在着重复区域时,就存在互相干扰问题。图2是一幅学生公寓的AP部署信道排列图,由于墙壁隔离度差,不仅同一层楼的同信道AP之间可见,上下楼层之间的同信道AP也存在互相干扰的情况。

学生公寓的AP部署信道排列图

图2 学生公寓的AP部署信道排列图

  同频AP之间如果可见,以802.11为基础的WLAN,空口是所有设备的公共传输媒介,两个AP之间将根据CSMA/CA原则,进行互相退避,这势必会大大降低性能,两个AP的总性能将不会超过一个信道的性能。

  如果同频AP之间不可见但覆盖区域有交集,则对处于交集区域的Client而言可能会形成隐藏节点或暴露节点问题(如图3所示)。

  左图:AP1给client发送数据,AP2不能感知,同时也发送数据,导致在AP1的client处冲突。 右图:AP1的client要数据,但感知AP2正在发送,从而退避不能发送。

隐藏节点和暴露节点干扰

图3 隐藏节点和暴露节点干扰

  隐藏节点和暴露节点会产生两个方面的问题,其一是报文发送时需要退避或不断重传;其二是由于报文重传时会降低报文发送的物理速率,导致同一AP的影响范围扩大,也使得报文发送占用更多的空口时长,冲突几率加大,引起更多的重传。

  2. 邻频干扰

  根据802.11标准,RF信号发送时其频谱宽度有一定的要求。以2.4G为例,信号的频谱掩码如图4所示:

2.4G信号的频谱掩码

图4  2.4G信号的频谱掩码

  其发射频宽为22MHz,在距离中心频率11MHz之外时,要求衰减超过30dB。对任何WLAN发射机来说,在发射频宽之外,信号也不可能马上降低为0,而是逐渐衰减。如果两个中心频率不同的WLAN设备之间的发射频宽有重叠的部分,就会产生相互影响,形成了邻频干扰。即使对不重叠的相邻信道(如2.4G的1、6信道,11a的161、162信道),如果两个设备之间距离过近且发送功率比较大,也会产生影响。

  对一个WLAN网络来说,邻频干扰包括自身的邻频干扰和来自邻居网络的邻频干扰。WLAN网络应首先避免自身的邻频干扰,所有设备建议部署在不重叠的信道上,并且设备之间避免过近。对5G来说,相邻设备最好部署为不相邻的信道,完全避免相邻信道之间可能产生的干扰。

  3. 来自WLAN网络外部的干扰

  来自WLAN网络外部的干扰也分为WLAN干扰和非WLAN干扰。WLAN干扰主要包括Rogue设备、邻居WLAN网络、Ad hoc网络等。WLAN工作在ISM频段,除了WLAN设备外,还有许多非WLAN设备也工作在该频段,如微波炉、无绳电话、蓝牙设备、无线摄像机、户外微波链路、无线游戏控制器、Zigbee、WiMax等等。非WLAN干扰源会干扰WLAN信号,导致WLAN信号无法被正确接收。还有一些非ISM频段上的设备会在ISM频段上产生射频信号泄露,当临近距离很近的情况下,会对WLAN设备形成干扰。如3G基站,当和WLAN共存于一个机架,或者共用室内馈路系统时。

  总的来说,一个WLAN网络,影响它的干扰源可以从以下几个方面来考虑:

  l 网络自身的干扰

  • 自身的同频干扰
  • 自身的邻频干扰

  2 来自外部的干扰

  • WLAN干扰
  • 非WLAN干扰

  二、 无线干扰的检测

  大型的WLAN网络一般采用瘦AP架构。对无线干扰的检测和消减既可以利用提供接入服务的AP来扫描,也可以通过专门的设备组成的网络来进行,甚至还可以配合专门的手持RF设备来进行干扰定位。后两者属于频谱分析的范围。手持RF设备的定位,一般适用于小的网络或小范围的精确定位。而大的网络,一般需要部署专门的网络来监控。这种专门的网络,其设备一般是处于Monitor状态的AP,或者是专门的Sensor。这些设备会将从空口监控到的数据发给服务器,进行分析、保存和处理。

  专门的检测网络和提供接入的网络之间有两种协作方式,其一是相互独立方式,即检测网络的设备和接入网络的设备是由不同控制器管理的,二者无任何交互;另一种是集成方式,即检测网络的设备和接入网络的设备是由相同的控制器管理的,检测网络的服务器也能处理来自接入网络的AP的监控数据。集成方式的网络相比较独立方式的网络来说,具有能够统一管理、充分利用接入网络的资源、检测和定位方便等特点。

  无线干扰的检测实际就是持续地监视空口信号。当空口信号能量超过一定值后,就进行FFT变换,并进一步输出给WLAN接收机和各种识别器(Classifier),前者判断干扰是否为WLAN信号,并进一步分析MAC信息,后者判断非WLAN干扰源的类型(如图5所示)。

无线干扰检测芯片的工作原理图

图5 无线干扰检测芯片的工作原理图

  三、无线干扰的避免和消减

  对无线干扰的避免和消减,目前有以下5种措施:

  • 网络部署勘测和优化。即在部署网络时需要勘测部署环境、各种阻挡物的衰减系数、规划网络的应用服务、规划AP覆盖范围、选择AP安装位置、选择合适的发射天线等。没有良好的网络部署,很难达到最佳的网络性能。
  • RRM(射频资源管理)。即对整个网络中的各个AP进行功率优化和信道优化;
  • 频谱分析;
  • 信道复用;
  • 频谱导航;即将双频用户尽量引导到5G频段上,降低2.4G上的负荷。5G上的非WLAN设备要相对少得多,信道数量多,能够获得非常好的性能。

  1.  RRM

  RRM是WLAN网络的频谱资源管理模块,负责空口噪声、网络外的WLAN干扰、空口利用率,以及AP和Client的流量交互等信息的监控和分析,并根据这些信息动态调整AP的信道,选择最佳信道进行传输。信道调整必须进行整网考虑,并需要考虑对Client的影响最小。如图6所示,要覆盖的目标办公区外有两个其他网络的AP,分别工作在信道11和信道6上,则RRM能够根据空口扫描结果,将和它们临近的AP自动调整到其他非干扰信道上。

信道自动调整示意图

图6    信道自动调整示意图

  另一方面,RRM能够监控本网络中各个AP的邻居信息、Client的RF信息等,并根据这些信息动态调整每个AP的发送功率。当发现覆盖黑洞时,将加大发射功率;当发现同信道的邻居AP的信号强度高于一定程度时,将降低发送功率,从而降低相互干扰(如图7所示)。

发送功率调整后,两个同频AP不再干扰

图7    发送功率调整后,两个同频AP不再干扰

  2. 频谱分析

  频谱分析能够及时、全面地检测出来自周围环境的非WLAN干扰。当频谱分析检测到新的干扰时,将会发出告警,并显示干扰的类型、干扰的信道、干扰强度、占空比等信息,并可以进一步定位干扰所在位置,便于及时排除。频谱分析还能监控整个网络的空口性能的情况,并适时发出告警。

  频谱分析和RRM结合,能够使得整个网络在无需人工介入的情况下,及时规避干扰信道,从而保证网络的可用性。

  3. 信道复用

  在高密度部署的环境中,如宽敞的会议大厅、学生宿舍、图书馆等,AP部署密度比较高,常会导致同信道的AP之间可见,相互干扰严重。利用信道复用技术,可以进一步降低AP的覆盖范围,从而消弥相互干扰,提高信道重用程度。

  信道复用实际上是提高AP的CCA门限并降低接收灵敏度。CCA,即信道空闲评估,是指WLAN芯片在向空口发射信号前需要评估信道是否为空闲。若为空闲,则在执行完冲突退避算法后就可以发送报文;若为忙,则需等待。接收灵敏度是指要求到达WLAN接收机的RF信号强度不能低于一定值,才能被正确接收。实际上,当RF信号强度低于接收灵敏度时,WLAN芯片将不启动接收动作。

  当接收灵敏度降低时,将会缩小AP的覆盖范围,但同时能够忽略同信道的邻居AP信号,从而不影响各自范围内的接收。当提高CCA门限时,即使同信道的邻居AP在发送信号,只要信号强度不超过CCA门限,AP仍能够发送自己的信号。此时只要该信号到达Client处能够满足SNR(信噪比)要求,仍能被Client正确接收。

采用信道复用后,AP的覆盖效果以及不同距离内的吞吐性能对比

图8    采用信道复用后,AP的覆盖效果以及不同距离内的吞吐性能对比

我们一直都在努力坚持原创.......请不要一声不吭,就悄悄拿走。

我原创,你原创,我们的内容世界才会更加精彩!

【所有原创内容版权均属TechTarget,欢迎大家转发分享。但未经授权,严禁任何媒体(平面媒体、网络媒体、自媒体等)以及微信公众号复制、转载、摘编或以其他方式进行使用。】

微信公众号

TechTarget微信公众号二维码

TechTarget

官方微博

TechTarget中国官方微博二维码

TechTarget中国

电子邮件地址不会被公开。 必填项已用*标注

敬请读者发表评论,本站保留删除与本文无关和不雅评论的权力。

相关推荐